
Stabilization of a light bullet in a layered Kerr medium with sign-changing nonlinearity

Sadhan K. Adhikari
Instituto de Física Teórica, Universidade Estadual Paulista, 01.405-900 São Paulo, São Paulo, Brazil

(Received 12 February 2004; published 21 September 2004)

Using the numerical solution of the nonlinear Schrödinger equation and a variational method, it is shown
that s3+1d-dimensional spatiotemporal optical solitons, known as light bullets, can be stabilized in a layered
Kerr medium with sign-changing nonlinearity along the propagation direction.
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I. INTRODUCTION

After the prediction of self-trapping[1] of an optical
beam in a nonlinear medium resulting in an optical soliton
[2,3], there have been many theoretical and experimental
studies of the stabilization of such a soliton under different
conditions of nonlinearity. A bright soliton in 1+1 dimension
fs1+1dDg in a Kerr medium is unconditionally stable for a
positive or self-focusing(SF) nonlinearity in the nonlinear
Schrödinger equation(NLS) [3]. However, ins2+1dD in a
homogeneous bulk Kerr medium one cannot have a stable
solitonlike axisymmetric cylindrical beam[4–6]. Also, in
s3+1dD in such a medium one cannot have a stable optical
wave packet that remains confined in all directions. Such a
confined wave packet ins3+1dD is often called a light bullet
and represents the extension of a self-trapped optical beam
into the temporal domain[3]. If the nonlinearity is negative
or self-defocusing (SDF), any initially created soliton
spreads out in boths2+1dD and s3+1dD [3]. If the nonlin-
earity is positive or of SF type, any initially created soliton is
unstable and eventually collapses[3].

Recently, through a numerical simulation as well as a
variational calculation based on the NLS, it has been shown
that the axisymmetric cylindrical beam ins2+1dD can be
stabilized in a layered medium if a variable nonlinearity co-
efficient is used in different layers[7,8]. A weak modulation
of the nonlinearity coefficient along the propagation direc-
tion leads to a reasonable stabilization ins2+1dD [8]. A
much better stabilization results if the Kerr coefficient in a
layered medium is allowed to vary between successive SDF
and SF type nonlinearities, i.e., between positive and nega-
tive values [7]. However, it has been shown that such a
modulation of the nonlinearity coefficient in a Kerr medium
should fail to achieve stabilization of a light bullet[9] or a
general three-dimensional soliton[10].

As the stabilization of a light bullet is of utmost interest,
we reconsider this problem and find, to great surprise, that a
spatiotemporal light bullet can be stabilized in a layered Kerr
medium with sign-alternating nonlinearity along the propa-
gation direction.

Although the present work is of interest from a theoretical
point of view, it also has phenomenological or experimental
consequences. Recently, it has been emphasized[11] that
large negative values of the Kerr coefficient can be created
by using the cascading mechanism with a large phase-
mismatch parameter. It has also been suggested[12] that a

layered medium with alternating sign of nonlinearity can be
created with the technique of mesoscopic self-organization.
Hence a stabilized light bullet can be experimentally realized
in the future.

To stabilize a soliton in a SF homogeneous bulk Kerr
medium, the repulsive kinetic pressure due to the Laplacian
operator in space and time in the NLS has to balance the
attraction due to nonlinearity. For a light bullet of sizeL, the
kinetic pressure is proportional toL−2 whereas the attraction
is proportional toL−D in sD+1dD. The effective potential,
which is the sum of these two terms, has a confining mini-
mum only forD=1, leading to a stable soliton[13]. Using a
variational method we find that a layered Kerr medium with
sign-changing nonlinearity ins3+1dD can lead to an effec-
tive potential with a minimum that can stabilize the solitons.

In Sec. II we present a variational study of the problem
and in Sec. III we present a complete numerical study.
Finally, in Sec. IV we give the concluding remarks.

II. VARIATIONAL CALCULATION

For anomalous dispersion, the NLS can be written as[3]
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where in s3+1dD the three-dimensional vectorr has space
componentsx and y and time componentt, and z is the
direction of propagation. The Laplacian operator¹r

2 acts on
the variablesx, y, and t. In s2+1dD in Eq. (1) the vectorr
could have componentsx andy or x andt, while z continues
as the direction of propagation. The nonlinearity coefficient
gszd in a layered Kerr medium is piecewise continuous and
can have successive positive(SF) and negative(SDF) values
g+ andg− in layers of widthd. The normalization condition
is edr uusr ,zdu2=P, whereP is the power of the optical beam
[1,7].

For a spherically symmetric soliton ins3+1dD, usr ,zd
=Usr ,zd. Then the radial part of the NLS(1) becomes[3]
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In the following we consider variational and numerical solu-
tions of Eq.(2).

First we consider the variational approach with the
following trial Gaussian wave function for the solution of
Eq. (2) [9,13]:
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whereNszd, Rszd, bszd, andaszd are the soliton’s amplitude,
width, chirp, and phase, respectively. In Eq.(3) in s3+1dD
Nszd=P1/2/ fp3/4R3/2szdg. The trial function(3) satisfies the
following conditions:(a) the normalization condition[1,7] as
well as the boundary conditions;(b) Usr ,zd→constant asr
→0; and(c) uUsr ,zdu decays exponentially asr →` [7].

The Lagrangian density for generating Eq.(2) is [9]
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The trial function(3) is substituted in the Lagrangian density
and the effective Lagrangian is calculated by integrating the
Lagrangian density:Leff=eLsUddr . The Euler-Lagrange
equations forRszd, bszd, andaszd are then obtained from the
effective Lagrangian in standard fashion[7,9,13]. Eliminat-
ing aszd, the equations forbszd andRszd in s3+1dD can be
written as

dRszd
dz

= Rszdbszd, s5d
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From Eqs.(5) and (6) we get the following second-order
differential equation for the evolution of the width:
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Here we reconsider the stability condition of light bullets
of Eq. (7) for gszd=g0+g1szd, where g0=g0 is a positive
constant of SF type andg1szd is a rapidly varying part with
zero mean value. We takeg1szd=g1 sinsvzd, as this is a form
that we can integrate easily. We breakRszd into a slowly
varying partAszd and a rapidly varying partBszd as Rszd
=Aszd+Bszd. Substituting this into Eq.(7) and retaining
terms of the order ofv−2 in Bszd, as we obtain the following
equations of motion forBszd andAszd:
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where k l denotes the time average over rapid oscillations.
Using the solutionBszd=g1P sinsvzd / f2Î2p3v2A4szdg, the
equation of motion forAszd becomes
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The quantity in the square brackets in Eq.(11) is the effec-
tive potentialUsAd of the equation of motion

UsAd =
1
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Stabilization is possible when there is a minimum in this
effective potential[13]. Unfortunately, this condition does
not lead to a simple analytical solution. However, straight-
forward numerical study reveals that this effective potential
has a minimum for a positiveg0P corresponding to attraction
(SF nonlinearity) with g0P above a critical value. For a nu-
merical calculation the quantitygP is taken to be of the form
gP=g0P+g1P sinsvzd;g0Pf1+4 sins10pzdg, so that g1

=4g0 and v=10p. The numerical values forg1 and v are
taken as examples; otherwise they do not have great conse-
quence for the result so long asv is large, corresponding to
rapid oscillation. In Fig. 1(a) we plot the effective potential
UsAd vs A for g0P=30,100,200, and 500 forv=10p. For
g0P=30 there is no minimum inUsAd, whereas a minimum
has appeared forg0P=100 which becomes deeper forg0P
=200 and 500. A careful examination reveals that the thresh-
old for the minimum in the present case is given byg0P
<40. Hence in the present case stabilization is not possible
for g0P=30, and it is possible forg0P.40. There is no
upper limit for g0P and stabilization seems possible for an

FIG. 1. (Color online) The effective potentialUsAd of Eq. (12)
vs A in arbitrary units forg0P=30,100,200,500(from shallowest
to deepest minimum), for (a) v=10p and (b) v=30p.
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arbitrarily largeg0P. As g0P increases, the depth of the ef-
fective potential in Fig. 1(a) increases and, consequently, it is
easier to stabilize a soliton. As the first and the third terms on
the right-hand side of Eq.(10) are positive, no stabilization is
possible for a negativeg0P, corresponding to repulsion
(SDF).

In order to see the effect of the frequencyv on stabiliza-
tion, we plot in Fig. 1(b) the same effective potentials as in
Fig. 1(a) for v=30p. With the increase ofv the effective
potentials have become deeper and hence the stabilization
easier. Forg0P=30 we have a minimum in Fig. 1(b) whereas
there is no minimum in Fig. 1(a). With the increase ofv the
threshold value ofg0P for obtaining a minimum has been
reduced.

The sinusoidal variations of the Kerr nonlinearity as con-
sidered above for the variational study, only simplifies the
algebra and is by no means necessary for stabilization of
solitons. In the following numerical study we establish that
a rapid oscillation of the nonlinearity coefficient between
positive and negative values also stabilizes the soliton in
s3+1dD.

III. NUMERICAL CALCULATION

We solve Eq.(2) numerically using the split-step time-
iteration method employing the Crank-Nicholson discretiza-
tion scheme[14]. The time iteration is started with the
known solution of some auxiliary equation with zero nonlin-
earity. The auxiliary equations with known Gaussian solution
are obtained by adding a harmonic oscillator potentialr2 to
Eq. (2). Then in the course of time iteration the powerP and
a positive constant SF Kerr nonlinearitygszd=g0=1 are
switched on slowly and the harmonic trap is also switched
off slowly. If the nonlinearity is increased rapidly the system
collapses. The tendency to collapse or expand must be
avoided to obtain a stabilized soliton.

After switching off the harmonic trap in Eq.(2) and after
slowly introducing the final powerP and the constant non-
linearity gszd=g0=1, Kerr nonlinearityg1szd oscillating be-
tween ±g1 sug1u.1d like a step function asz changes byd is
introduced on top of the constant nonlinearity. The overall
Kerr nonlinearity now has successive positive and negative
valuesg+=1+g1 andg−=1−g1 in equidistant layers of width
d in the z direction. Stabilization of the final solution can be
obtained for a suitably choseng± and a smalld. If the SF
power after switching off the harmonic trap is large com-
pared to the spatiotemporal size of the beam, the system
becomes highly attractive in the final stage and it eventually
collapses. If the final power after switching off the harmonic
trap is small for its size the system becomes weakly attrac-
tive in the final stage and it expands. The final nonlinearity
has to have an appropriate intermediate value, decided by
trial, for final stabilization. The stabilization can be obtained
for a large range of values ofg± and d. After some experi-
mentation with Eq.(2) we opted for the choiceg+=5,
g−=−3, andd=0.1 in all our calculations.

In the present scheme of stabilization the nonlinearity rap-
idly fluctuates between appropriate positive(SF) and nega-
tive (SDF) values in the propagation direction. For positive

nonlinearity, the system tends to collapse, whereas in the
SDF regime it tends to expand to infinity. If the nonlineari-
ties are appropriate, the collapse in the first interval is exactly
compensated for by the expansion in the next interval, and
stabilization of the system is obtained. Obviously, the system
will be more stable when the intervals are small so that the
fluctuation of the system around a stable mean position is
small. Consequently, the system remains virtually static, and
the very small oscillations arising from collapse and expan-
sion remain imperceptible.

Although for the sake of convenience we applied a har-
monic trap in the beginning of our simulation, which is re-
moved later with increase of the nonlinearity, this restriction
is by no means necessary for stabilizing a soliton. Saito and
Ueda[13] used a qualitatively similar, but quantitatively dif-
ferent, procedure for stabilization in the context of Bose-
Einstein condensation in two dimensions. The procedure of
Saito and Ueda could also be applied successfully in the
present context.

Now we turn to a numerical investigation of Eq.(2). The
results are shown in Fig. 2 for thes3+1d-dimensional soli-
ton, where we plot the radial part of the wave function for
different z for a powerP=682.6. A fine-tuning of the power
was needed for the stabilization reported in Fig. 2.

In Fig. 2 the narrow spread of the wave function over a
large interval ofz shows the quality of stabilization. The
results at intermediatez lie in the region covered by the
plots. The plot of the full wave function at differentz on the
same graph clearly shows the degree of stabilization
achieved. The stabilization seems to be perfect and can easily
be continued for longer intervals ofz by increasing the
power. In Ref.[7] layers of widthd=0.001 were employed
for stabilization ins2+1dD. The present stabilization is ob-
tained with a much larger widthd=0.1, which makes the
present proposal more attractive from a phenomenological
point of view. The stabilization can be obtained only for
beams with power larger than a critical value. Numerically,
we found it was easier to obtain stabilization of beams with
power much larger than the critical value. Ins3+1dD good
stabilization could be obtained for much larger power: the
power employed in Fig. 2 was 682.6, whereas the critical

FIG. 2. (Color online) Wave functionuUsrdu of Eq. (2) of stabi-
lized light bullet of powerP=682.6 andkgszdl=g0=1 and g1szd
oscillating betweeng+=5 andg−=−3 in successive layers of width
d=0.1 in thez direction. The wave functions are shown at positions
z=0,50,100,150,200,250,300,350, and 400.
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variational power for the stabilization obtained in Fig. 1 is
about 40.

Using a variational procedure alone, not quite identical
with the present approach, in the context of Bose-Einstein
condensation Abdullaevet al. [9] also found that stabiliza-
tion of a soliton could be possible ins3+1dD via a temporal
modulation of the nonlinearity. However, they confirmed af-
ter further analytical and numerical study that such a stabili-
zation does not take place ins3+1dD. Saito and Ueda[13]
and Towers and Malomed[7], on the other hand, are silent
about the possibility of the stabilization of a soliton ins3
+1dD. We point out one possible reason for the negative
result obtained by Abdullaevet al. [9] in s3+1dD. The non-
linearity parameterl0N=Î2p3/2L with L=1 used in Ref.[9]
for stabilizing a soliton in s3+1dD is much too small
(smaller than the threshold discussed in Sec. II). Comparing
Eq. (2) of [9] with our Eq.(2) we find that the above value of
nonlinearity corresponds in our notation tog0P=l0N/2
=p3/2/Î2<3.9, whereas the present variational threshold for
obtaining a stabilized soliton isg0P<40. The very small
nonlinearity used in Ref.[9] is most possibly the reason for
the negative result obtained there. More recently, Montesinos
et al. [10] have also confirmed the conclusion of Ref.[9] that
no stable three-dimensional soliton could be obtained by a
variation of Kerr nonlinearity. However, they did not give
details of their study, which led to this conclusion, for a
comparison.

IV. CONCLUSION

In conclusion, after a variational and numerical study of
the NLS we find that it is possible to stabilize a spatiotem-
poral light bullet in s3+1dD by employing a layered Kerr
medium with a sign-changing nonlinearity along the propa-
gation direction. From a variational calculation we show that
an oscillating Kerr nonlinearity produces a minimum in the
effective potential, thus producing a potential well in which
the soliton can be trapped. The present stabilized soliton is a
slowly collapsing light bullet with large power. The oscillat-
ing Kerr nonlinearity stops the collapse and enhances the
lifetime of the soliton greatly. This is of interest for investi-
gation of whether such light bullets could be created experi-
mentally.

Apart from optics, such stable three-dimensional solitons
can be realized experimentally in Bose-Einstein condensates
(BECs), where a Feshbach resonance could be used to gen-
erate an oscillating nonlinearity or an oscillating effective
interatomic interaction via the modulation of an external
background magnetic field[9,13]. The stabilization of such
BEC solitons in two[9,10,13] and three[15] dimensions is
already under investigation.
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