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Stabilization of a light bullet in a layered Kerr medium with sign-changing nonlinearity
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Using the numerical solution of the nonlinear Schrédinger equation and a variational method, it is shown
that (3+1)-dimensional spatiotemporal optical solitons, known as light bullets, can be stabilized in a layered
Kerr medium with sign-changing nonlinearity along the propagation direction.
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[. INTRODUCTION layered medium with alternating sign of nonlinearity can be
created with the technique of mesoscopic self-organization.

After the prediction of self-trappingl] of an optical  pence a stabilized light bullet can be experimentally realized
beam in a nonlinear medium resulting in an optical soliton;, the future.

[2,3], there have been many theoretical and experimental T4 stapbilize a soliton in a SF homogeneous bulk Kerr

studies of the stabilization of such a soliton under differentmedium, the repulsive kinetic pressure due to the Laplacian
conditions of nonlinearity. A bright soliton in 1+1 dimension operator in space and time in the NLS has to balance the
[(1+1)D] in a Kerr medium is unconditionally stable for a 4tiraction due to nonlinearity. For a light bullet of sizethe
positive or self-focusingSF) nonlinearity in the nonlinear jnetic pressure is proportional to2 whereas the attraction
Schrédinger equatiotNLS) [3]. However, in(2+1)D in a s proportional toL™° in (D+1)D. The effective potential,
homogeneous bulk Kerr medium one cannot have a stablgnich is the sum of these two terms, has a confining mini-
solitonlik_e axisymmetri_c cylindrical bearfd—6]. Also, in ~ mum only forD=1, leading to a stable solitdi.3]. Using a
(3+1)D in such a medium one cannot have a stable opticajariational method we find that a layered Kerr medium with
wave packet that remains confined in all directions. Such &jgn-changing nonlinearity i63+1)D can lead to an effec-
confined wave packet i8+1)D is often called a light bullet  tjye potential with a minimum that can stabilize the solitons.
and represents the extension of a self-trapped optical beam | Sec. Il we present a variational study of the problem
into the temporal domaif8]. If the nonlinearity is negative and in Sec. Il we present a complete numerical study.

or self-defocusing (SDF), any initially created soliton Finally, in Sec. IV we give the concluding remarks.
spreads out in botk2+1)D and (3+1)D [3]. If the nonlin-

earity is positive or of SF type, any initially created soliton is Il. VARIATIONAL CALCULATION

unstable and eventually collapsis. _ For anomalous dispersion, the NLS can be writtefi3s
Recently, through a numerical simulation as well as a 51

variational calculation based on the NLS, it has been shown i— +2V2+ y(2)u(r,2? |u(r,2 =0, (1)

that the axisymmetric cylindrical beam i2+21)D can be dz 2

stabilized in a layered medium if a variable nonlinearity co-
efficient is used in different layef§,8]. A weak modulation

of the nonlinearity coefficient along the propagation direc-
tion leads to a reasonable stabilization (&+1)D [8]. A
much better stabilization results if the Kerr coefficient in a : ;
layered medium is allowed to vary between successive SDEOUId have componenisandy or x andt, while z continues

and SF type nonlinearities, i.e., between positive and negaa-S the direction of propage.ltion._ Th_e non_Iinearity_ coefiicient
tive values[7]. However, it has been shown that such ay(z) in a layered Kerr medium is piecewise continuous and

modulation of the nonlinearity coefficient in a Kerr medium can have successive positi¢ef) and negativgSDP) values

should fail to achieve stabilization of a light bullga] or a ¥+ @1d - in layers of widthd. The normalization condition
general three-dimensional solit¢h0)]. is fdr|u(r,2)|>=P, whereP is the power of the optical beam

As the stabilization of a light bullet is of utmost interest, [1,7. ) ) . .
we reconsider this problem and find, to great surprise, that a FO @ Spherically symmetric soliton i8+1)D, u(r,2)
spatiotemporal light bullet can be stabilized in a layered Ker=Y(r»2). Then the radial part of the NL&) becomeg3]
medium with sign-alternating nonlinearity along the propa- 9 16 19
gation direction. ia_z tooetiot YU 2 [U(r,2=0. (2
Although the present work is of interest from a theoretical
point of view, it also has phenomenological or experimentaln the following we consider variational and numerical solu-
consequences. Recently, it has been emphadizgdthat tions of Eq.(2).
large negative values of the Kerr coefficient can be created First we consider the variational approach with the
by using the cascading mechanism with a large phaseellowing trial Gaussian wave function for the solution of
mismatch parameter. It has also been suggedtgfdthat a  Eq. (2) [9,13:

where in(3+1)D the three-dimensional vectorhas space
componentsx andy and time component, and z is the
direction of propagation. The Laplacian opera‘ﬁfracts on
the variablest, y, andt. In (2+21)D in Eq. (1) the vectorr

1539-3755/2004/13)/0366084)/$22.50 70 036608-1 ©2004 The American Physical Society



SADHAN K. ADHIKARI

2

o IEb(z)r2+ ia(2) |,

u(r,2) = N(z)exp{— (3

whereN(z), R(z), b(z), anda(z) are the soliton’s amplitude,
width, chirp, and phase, respectively. In Eg) in (3+1)D
N(z)=P¥?/[7¥*R%?(2)]. The trial function(3) satisfies the
following conditions:(a) the normalization conditiof,7] as
well as the boundary conditionéh) U(r,z) — constant as
—0; and(c) |U(r,z)| decays exponentially as—« [7].

The Lagrangian density for generating Eg) is [9]
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L(U)= —(

The trial function(3) is substituted in the Lagrangian density

and the effective Lagrangian is calculated by integrating the

Lagrangian density:Les=/L£(U)dr. The Euler-Lagrange
equations foiR(z), b(z), anda(z) are then obtained from the
effective Lagrangian in standard fashipn9,13. Eliminat-
ing a(2), the equations fob(z) andR(z) in (3+1)D can be
written as

P rian, ©
z

db(z) 1, v2P 1

dz  RY2 b 2\27°R(2) ©

From Eqgs.(5) and (6) we get the following second-order
differential equation for the evolution of the width:

PR@_ 1 y2P o
diZ2 R©2 222°R2)

Here we reconsider the stability condition of light bullets

of Eq. (7) for Y(2)=y,+y.(2), where yy=gy is a positive
constant of SF type angh(2) is a rapidly varying part with
zero mean value. We takg(z) =g; sin(wz), as this is a form
that we can integrate easily. We breBkz) into a slowly
varying partA(z) and a rapidly varying parB(z) as R(2)
=A(2)+B(2). Substituting this into Eq(7) and retaining
terms of the order of~2 in B(2), as we obtain the following
equations of motion foB(z) and A(2):

d’B(z) _ _ GyP sin(w2z) ®
dZ  2\27%A%2)’
A@ _ 1 gP 20,P(B(2)sin(w2)) ©
dZ2 A2 2\27°A%2) 2785z
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FIG. 1. (Color online The effective potentiaU(A) of Eq. (12)
vs A in arbitrary units forgyP=30,100,200,50@from shallowest
to deepest minimum for (a) w=10m and(b) =30

FAD 1 P | giP? 10
dZ2 AP 2\279A%  47Pw?AY
gl 1 JoP g2P?
= _2_ J/_3 3 3 258 | (11)
AA| 2A? 62733  32780%A

The quantity in the square brackets in E#l) is the effec-
tive potentialU(A) of the equation of motion

1 goP giPZ
UA=—5-—F—=—+ : 12
* 202 6\27°A3 327 w’A8 (12

Stabilization is possible when there is a minimum in this
effective potential[13]. Unfortunately, this condition does
not lead to a simple analytical solution. However, straight-
forward numerical study reveals that this effective potential
has a minimum for a positivg,P corresponding to attraction
(SF nonlinearity with goP above a critical value. For a nu-
merical calculation the quantityP is taken to be of the form
gP=ggP+g;P sin(wz) =gyP[1+4 si(107z)], so that g;
=49, and w=10m. The numerical values fog, and w are
taken as examples; otherwise they do not have great conse-
quence for the result so long asis large, corresponding to
rapid oscillation. In Fig. {a) we plot the effective potential
U(A) vs A for goP=30,100,200, and 500 fap=10s. For
goP=30 there is no minimum iWJ(A), whereas a minimum
has appeared fag,P=100 which becomes deeper fggP
=200 and 500. A careful examination reveals that the thresh-
old for the minimum in the present case is given ¢gyP

where () denotes the time average over rapid oscillations~40. Hence in the present case stabilization is not possible

Using the solutionB(2)=g;P sin(wz)/[2\2m3w?A%2)], the
equation of motion folA(z) becomes

for goP=30, and it is possible fogyP>40. There is no
upper limit for goP and stabilization seems possible for an
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arbitrarily largegyP. As gyP increases, the depth of the ef- 02
fective potential in Fig. (@) increases and, consequently, it is 016k
easier to stabilize a soliton. As the first and the third terms on '
the right-hand side of E@10) are positive, no stabilization is — 012}
possible for a negativeyyP, corresponding to repulsion S
(SDP). — 0.08
In order to see the effect of the frequeneyon stabiliza- 0.04L
tion, we plot in Fig. 1b) the same effective potentials as in
Fig. 1(a) for ®=30x. With the increase ofv the effective 00 0 2'0 2 20

potentials have become deeper and hence the stabilization -
easier. FogyP=30 we have a minimum in Fig.(fh) whereas
there is no minimum in Fig. (&). With the increase o the

threshold value ofyP for obtaining a minimum has been ., light bullet of powerP=682.6 and(y(2))=go=1 and 7(2)

reduced.' . L . . oscillating betweeny, =5 andy_=-3 in successive layers of width
. The sinusoidal varlatlon_s Qf the Kerr nonllnearlty _5_‘5 CON-4=0.1 in thez direction. The wave functions are shown at positions
sidered above for the variational study, only simplifies the,-q 50 100.150,200,250, 30850, and 400.

algebra and is by no means necessary for stabilization of
solitons. In the following numerical study we establish that
a rapid oscillation of the nonlinearity coefficient betweennonlinearity, the system tends to collapse, whereas in the
positive and negative values also stabilizes the soliton IrSDF regime it tends to expand to infinity. If the nonlineari-
(3+1)D. ties are appropriate, the collapse in the first interval is exactly
compensated for by the expansion in the next interval, and
stabilization of the system is obtained. Obviously, the system
will be more stable when the intervals are small so that the
We solve Eq.(2) numerically using the split-step time- fluctuation of the system around a stable mean position is
iteration method employing the Crank-Nicholson discretiza-small. Consequently, the system remains virtually static, and
tion scheme[14]. The time iteration is started with the the very small oscillations arising from collapse and expan-
known solution of some auxiliary equation with zero nonlin- sion remain imperceptible.
earity. The auxiliary equations with known Gaussian solution Although for the sake of convenience we applied a har-
are obtained by adding a harmonic oscillator potenfialo ~ monic trap in the beginning of our simulation, which is re-
EqQ.(2). Then in the course of time iteration the poweand  moved later with increase of the nonlinearity, this restriction
a positive constant SF Kerr nonlinearity(z)=go=1 are is by no means necessary for stabilizing a soliton. Saito and
switched on slowly and the harmonic trap is also switchedJeda[13] used a qualitatively similar, but quantitatively dif-
off slowly. If the nonlinearity is increased rapidly the systemferent, procedure for stabilization in the context of Bose-
collapses. The tendency to collapse or expand must bEinstein condensation in two dimensions. The procedure of

FIG. 2. (Color onling Wave function|U(r)| of Eq. (2) of stabi-

IIl. NUMERICAL CALCULATION

avoided to obtain a stabilized soliton. Saito and Ueda could also be applied successfully in the
After switching off the harmonic trap in Eq2) and after present context.
slowly introducing the final poweP and the constant non- Now we turn to a numerical investigation of EQ). The

linearity ¥(z)=go=1, Kerr nonlinearityy;(z) oscillating be- results are shown in Fig. 2 for thH&+1)-dimensional soli-
tween 19, (|g1)>1) like a step function ag changes bylis  ton, where we plot the radial part of the wave function for
introduced on top of the constant nonlinearity. The overalldifferentz for a powerP=682.6. A fine-tuning of the power
Kerr nonlinearity now has successive positive and negativavas needed for the stabilization reported in Fig. 2.
valuesy,=1+g; andy_=1-g;, in equidistant layers of width In Fig. 2 the narrow spread of the wave function over a
d in the z direction. Stabilization of the final solution can be large interval ofz shows the quality of stabilization. The
obtained for a suitably chosep, and a smalld. If the SF results at intermediate lie in the region covered by the
power after switching off the harmonic trap is large com-plots. The plot of the full wave function at differenton the
pared to the spatiotemporal size of the beam, the systesame graph clearly shows the degree of stabilization
becomes highly attractive in the final stage and it eventuallyachieved. The stabilization seems to be perfect and can easily
collapses. If the final power after switching off the harmonicbe continued for longer intervals af by increasing the
trap is small for its size the system becomes weakly attracpower. In Ref[7] layers of widthd=0.001 were employed
tive in the final stage and it expands. The final nonlinearityfor stabilization in(2+1)D. The present stabilization is ob-
has to have an appropriate intermediate value, decided Byined with a much larger widtld=0.1, which makes the
trial, for final stabilization. The stabilization can be obtainedpresent proposal more attractive from a phenomenological
for a large range of values of, andd. After some experi- point of view. The stabilization can be obtained only for
mentation with Eq.(2) we opted for the choicey,=5, beams with power larger than a critical value. Numerically,
y.=-3, andd=0.1 in all our calculations. we found it was easier to obtain stabilization of beams with
In the present scheme of stabilization the nonlinearity rappower much larger than the critical value. (8+1)D good
idly fluctuates between appropriate positil&F) and nega- stabilization could be obtained for much larger power: the
tive (SDF) values in the propagation direction. For positive power employed in Fig. 2 was 682.6, whereas the critical
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variational power for the stabilization obtained in Fig. 1 is V. CONCLUSION
about 40.

Using a variational procedure alone, not quite identical
with the present approach, in the context of Bose-Einstei
condensation Abdullaeet al. [9] also found that stabiliza-
tion of a soliton could be possible {3+ 1)D via a temporal
modulation of the nonlinearity. However, they confirmed af-
ter _further analytical and numerical stuqy that such a Stab”i'effective potential, thus producing a potential well in which
zation does not take place {8+1)D. Saito and Ued@l13] ¢ gojiton can be trapped. The present stabilized soliton is a
and Towers and Malomef¥], on the other hand, are silent gjowly collapsing light bullet with large power. The oscillat-
about the possibility of the stabilization of a soliton @@  jng Kerr nonlinearity stops the collapse and enhances the
+1)D. We point out one possible reason for the negativeifetime of the soliton greatly. This is of interest for investi-
result obtained by Abdullaeet al.[9] in (3+1)D. The non-  gation of whether such light bullets could be created experi-
linearity parametekoN=12732A with A=1 used in Ref[9]  mentally.
for stabilizing a soliton in(3+1)D is much too small Apart from optics, such stable three-dimensional solitons
(smaller than the threshold discussed in Sec.Gbmparing ~ €an be realized experimentally in Bose-Einstein condensates
Eq.(2) of [9] with our Eq.(2) we find that the above value of (BECy9, where a Feshbach resonance could be used to gen-

nonlinearity corresponds in our notation gyP=\,N/2  €rate an oscillating nonlinearity or an oscillating effective
=32/ 2~3.9. whereas the present variational threshold fofnteratomic interaction via the modulation of an external

- o ; D background magnetic fielfp,13]. The stabilization of such
obtaining a stabilized soliton igogP~40. The very small X _ ; ) .
nonlinearity used in Ref9] is most possibly the reason for BEC solitons in two[9,10,13 and thre¢{15] dimensions is

the negative result obtained there. More recently, Montesino‘:é‘,llready under investigation.

et al.[10] have also confirmed the conclusion of Ré&X that

no stable three-dimensional soliton could be obtained by a ACKNOWLEDGMENTS

variation of Kerr nonlinearity. However, they did not give
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In conclusion, after a variational and numerical study of
he NLS we find that it is possible to stabilize a spatiotem-
poral light bullet in(3+1)D by employing a layered Kerr
medium with a sign-changing nonlinearity along the propa-
gation direction. From a variational calculation we show that
an oscillating Kerr nonlinearity produces a minimum in the
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